Study of oxidation and thermooxidative stability of nanocrystalline titanium diboride

Metallurgy and Materials
Authors:
Abstract:

Oxidation and thermal-oxidative stability of titanium diboride are studied during storage and heating in air. Titanium diboride has been synthesized by plasma and magnesium-thermal methods and has the following specific surface areas, m2/kg: 43000 for TiB2 (1), 38000 for TiB2 (2), 2600 for TiB2 (3). It was found that titanium diboride actively adsorbs oxygen and moisture when stored in air for the first 24 hours: the oxidation reaches 11,06 ∙ 10–7 for TiB2 (1), 8,15 ∙ 10–7 for TiB2 (2), 31,5 ∙ 10–7 kg O2/m2 for TiB2 (3). Analytical dependencies were obtained for the calculation of oxidation. When heated in air, titanium diboride nanocrystals are oxidized in the temperature range (623–673) ± 15 K, microcrystals at a temperature of 688 ± 5 K and higher. The pyrolytic boron and carbon accompanying the diboride are oxidized in the temperature ranges (550–870) ± 12 K and (670–790) ± 17 K